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TWO-DIMENSIONAL DIFFUSION OF A BINARY
MIXTURE OF NEUTRAL GASES

M. V. Vigdorovich and O. L. Pupkova UDC530.1

An expression for the coefficient of two-dimensional diffusion of a binary mixture of neutral gases is
obtained within the framework of the kinetic theory.

The notions of an aggregate of particles on the phase interface as of a two-dimensional gaseous sys-
tem are traditionally used in description of various physicochemical processes [1, 2]. In a humber of cases
one should consider a binary mixture of particles on the interface [3, 4]. We give the derivation of the coef-
ficient of two-dimensional diffusion for a mixture of two types of uncharged gases within the framework of
the kinetic theory following [5].

We use the Boltzmann kinetic equation with account for collisions of particles
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where the subscripts a and b number the types of particles. In the case of elastic collisions of particles, the
Boltzmann integral of collisions | (fa, fy) can be written in the form

| (Fa o) = J APt Vay 00 Fa Fy = Fa o

here and below the primes refer to the quantities characterizing gas particles after collision, vy = V4 — Vy,
and dog, is the differential diameter of scattering (an analog of the differential cross section of scattering in
a three-dimensional case). We seek the distribution function f, by the Chapman-Enskog method in the form

f=fQ+efP+e%@ 4 2

where the small parameter € determines frequent collisions of particles, and thus restrict ourselves to the first
approximation. The pulse-distribution function of the zeroth approximation £ obtained with no regard for
the left-hand side of Eg. (1) is the two-dimensional Maxwell distribution
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For the quantities n,, vo, and T to have the meaning of number density of particles, mean mass velocity, and
temperature, the equalities
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must hold. Since they are valid for f, = f{”, similar expressions yield 0 (s = 1, 2, ...) for the following terms
of expansion (2):

[dpaty?=0, (4)
S myfvafyd dp, =0, (5)
S5 maJ’(v ~vp? ¥ dp,=0. (6)

Let £V = fO¢,. Substituting ¥ into the kinetic equation of the first approximation
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we obtain the equation
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where V4 = v — v

To reduce Eq. (7) to a form more convenient for caculation of the distribution function with account
for the first approximation, we use the equations of continuity, motion, and heat transfer in the Euler approxi-
mation with no regard for diffusion, viscosity, and heat conduction.

Expressing the time derivatives from the continuity equation

on, _
Y =—div (n, vp) ,

the equation of gas motion
ovg O a0 1 ap 1
ENO_ p al‘ Z na a’
where p = nkT is the pressure, p = Z nam, is the density, and n = Z N, and the equation of heat transfer
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and substituting them into Eqg. (7), we obtain
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where
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For a binary mixture of gases
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According to (4)—(6), system (8) must be supplemented by the conditions

Idpa feSO)q)a =0, ©
S Mafvafi b2 dpa=0, (10)
a
S 2 m, [ (va=vo’ (70, dp,=0. (11)
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To calculate the coefficient of diffusion, it is sufficient to consider the case where the gradients of
temperature and velocity are absent and there are no force fields. Then we seek the function ¢4(Vy) in the
form

(12)
0a= Vsz Ca %Dﬂv d:

in this case, conditions (9) and (11) are satisfied automatically. To determine the function C,;, we use its
expansion in some orthogona system of polynomias. In this work, we restrict ourselves to the first term of
the expansion in Laguerre polynomials, which is a constant,

Ca(®= C(aO) ' (13)
and find it. We note that here the additiona condition (10) takes the form
n, Vm, C9 +n,Vm, ¢ =0, (14)

To find the coefficient of diffusion, we write the mass density of the flux of particles of one type:
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J,=mn, V,0=m, [ dp 1%V, . (15)
Substituting expressions (3) and (12) into Eg. (15), we obtain for the flux

2
nm
J=- plmz Dyd,

where the coefficient of diffusion Dy, is

__ pny mKT h _
Dy = A, ;; > ‘([dxexp( X) XC, (X) -
Substitution of (13) yields

n KT
Doy = -E—n;v o (16)

The equality Dg, = —Dpy follows from Egs. (14) and (16).
In order to calculate Cgo), one should substitute expression (12) into Eq. (8); the latter takes the form
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We multiply Eq. (17) by V; and integrate it with respect to velocities. On the left-hand side we obtain

[ f(O)VZ_Z_kT. (18)
n m’
on the right-hand side we have
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With account for the law of conservation of momentum, we obtain from (17)-(19)
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To calculate the integral, we pass to the system of coordinates of the center of inertia of colliding
particles; in this case, the following relations hold:

Vi=Vy=V, mV+mV,=P; Hzimlmz ;
m +m,
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Integrating in the new coordinates and bearing in mind that the differential diameter of scattering in
the case of impermeable spheres of radii a; and a is equal to do = (a; + a,)dd, we obtain
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Substituting expression (20) into (16), for the coefficient of two-dimensiona diffusion of a binary mixture we
have

Dp=——e—r[ T I L1 (21)
3nvan Y p na +a,

In conclusion, we make some comparative estimates. In [5], the coefficient of diffusion of a binary
mixture of gases is presented in a three-dimensional case:

5 3Vn kT 1 1
-V =, 2
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where the three-dimensional physical quantities corresponding to those present in Eq. (21) and similar to
them are denoted by a tilde. Assuming that the two-dimensional density of particles in an arbitrary cross
section of a volume chosen at random in the three-dimensional case has the same order as the surface density
of particles in the two-dimensional case, i.e., no< | B and noc | '2, where | is the characteristic distance be-
tween the centers of particles, we obtain for the rdation of the coefficients of diffusion

Dyp 8 a+a

D, 9t |

We apply (22) to a binary mixture consisting of atoms of hydrogen and molecules of water; this
system is of high priority in considering a number of surface processes. The quantity (a; +ap) IS approxi-
mately equal to 0.4 nm. If the density of the particles on the surface is high, we can assume that | oc
(a1 + &), and the numerical value of the coefficient of two-dimensional diffusion for these values of the par-
ticle density is much lower than its three-dimensiona analog: D1,/Dq, = 0. To lower vaues of the particle
density there corresponds a higher vaue of |, so that the exceeding of the three-dimensiona coefficient of
diffusion over the two-dimensional coefficient increases. Thus, we can draw the conclusion that the numerica
value of a two-dimensiona coefficient of diffusion is aways lower (by an order of magnitude or more) than
the value of a three-dimensiona coefficient of diffusion for the corresponding density of particles. For the
mentioned system of atoms of hydrogen and molecules of water with an ultimately high value of the particle
density (I = a; +ay), we obtain for the coefficient of diffusion D1, ~ 3010°° m%/sec, which is the lower esti-
mate. To lower values of the particle density there will correspond higher values of the coefficient of diffu-
sion.

(22)
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NOTATION

fa and f,, pulse-distribution functions of the particles of types a and b; r,, radius sector of the particle
of type &; p, pulse of the particle of type a; v, velocity of the particle of type a; F,, force affecting the
particle of type a; my, and m,, masses of the particles of types a and b; I(fs fy), Boltzmann integral of
collisions; €, small parameter of the frequency of collisions; t, time; vy, relative velocity of the particles of
types a and b; dog,, differential diameter of scattering; fés), sth term in the distribution function of the parti-
cles of type a by powers €; ny and n,, number density of the particles of types a and b, respectively; k,
Boltzmann constant; T, temperature; vo, mean mass velocity of the particles; p, density of the gas mixture; n,
number density of the particles in the gas mixture; p, pressure of the gas mixture; ¢, and ¢y, distribution
functions of the particles of types a and b in the first approximation; V4(V,), velocity of the particle of type
a (type 1) relative to the mean mass velocity; dg, vector of transfer of the particles of type a; &y Kronecker
symbol (tensor); C,(X), function characterizing the distribution of the particles of type a in the first approxi-
mation; Cgo), zeroth term of the expansion of the function C,(X) in Laguerre polynomiads; J,, density of the
flux of the particles of type a; (V,), mean velocity of the particles of type a (relative to the mean mass
velocity); Dg,, coefficient of diffusion; P, pulse of the center of inertia of colliding particles; |, reduced
mass of the particles; n, unit vector of the direction of the velocity of the particle of type a in the system of
coordinates of the center of inertia of colliding particles; a; and a,, radii of the particles of types 1 and 2.
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